i

METIS MONTESSORI LYCEUM

INFORMATICA - AMSTERDAM

A Robot That Owns Money

Joppe Koers (4VWO - N&G NET)
and Noah Loomans (5HAVO - NéT)

supervised by
Jurjen HICKMANN

22nd January 2018

Contents
1 Introduction

2 Technical Word Definitions

3 The goal
4 How Cryptocurrencies Work
4.1 Introduction Lo
4.2 sha2b6
4.3 Proofofwork
4.4 Digital signatures oL o
4.5 Ledger e
4.6 The Blockchain oo oL
5 Field Research: Comparison of
Cryptocurrencies
5.1 General comparison
52 TOTA
5.3 Ethereum
6 Painpoints during the Process
6.1 Hardware e
6.2 Software
6.3 Further Information

7 Discussion

8 Conclusion

=W W W

(2R

10
10
10
11

11
11
11
13

13

13

1 Introduction

A Robot that owns Money seems like a strange concept. But rapidly developing
technologies like the blockchain will make this possible in the near feature. We,
as Informatica students are particularly intrigued by these technologies. This
is why we will try to test and implement these technologies. We will have two
goals. First, we want to see which/if cryptocurrencies are ready to be used right
now, our requirement will be, among other things, that you are able to interact
with the cryptocurrency from a light-weight computer. And secondly, we want
to visualize this concept with a robot.

Our research question will be; Are cryptocurrencies ready to be interacted
with on a light-weight computer?

I imagine most people will be pretty lost when reading that last paragraph,
which is why a word register is. Therefore, we will explain a couple of terms
in-short before continuing.

2 Technical Word Definitions

Blockchain A blockchain is a way to store and verify data without the use of a central
authority. Technologies built on a blockchain usually have specific prop-
erties that make it virtually impossible to alter data that is already on a
blockchain and also virtually impossible to add “invalid” data to a block-
chain.

Cryptocurrencies Cryptocurrencies are blockchains designed to hold digital currencies with real-
world value.

Light-weight computer Computers with very little processing power, memory, and storage. Take as
an example the Raspberry Pi 3 Model B, this is a computer that is about
the size of a credit card that you can use to browse the internet and watch
YouTube videos.

P2P Network Normally, if two computers want to share data they connect to the same server,
but in this case, they connect directly to each other, eliminating the in-
between server. This connection is usually faster and more secure than
the traditional way.

SSH This allows computers to send commands to other commuters over the internet.

3 The goal

The term blockchain and the term cryptocurrencies will be further explained in
section 4.

So, what is the goal of this project then? We will test to see if crypto-
currencies are ready to be used on a Raspberry Pi 3 Model B. In order
to do that, we will build a robot that uses the Raspberry Pi as it’s brain. This
robot will be able to receive payments using cryptocurrencies.

We will build a small robot (20cm x 20cm x 20cm) with a screen on it. On
the screen, it will ask to send money using a cryptocurrency. When this money
is successfully transferred the robot will move around. This symbolizes him

transferring an object. It helps clarify the whole process, most people do not
even know what a Bitcoin is, so it helps to visualize to as much of the process
as possible.

Our hypothesis is that the cryptocurrency Bitcoin cannot be used on a Rasp-
berry Pi, because if it’s high resource requirements. We expect that we can use
IOTA, however, because it advertises to IOT (Internet of Things) devices.

4 How Cryptocurrencies Work

4.1 Introduction

There are many cryptocurrencies, a few names are, Bitcoin[9], Ethereum|3],
Ripple[10], and IOTA[4]. You might have heard of them in the news recently,
but what is a cryptocurrency in the first place?

A cryptocurrency is a fully digital currency, that has no central place of
authority. This means that, unlike in traditional banking, there is not a small
group of people that are in charge of the money. Normally a bank has a large
vault with a lot of money in it. We call this centralized banking. In the real
world, people carry around cards that say how much money in the previously
named vault is theirs. There are a couple of problems with this method. First,
the bank could be robbed, then the people have right to money that doesn’t
exist. Next, the bank is regulated by people, and people make mistakes. So a
bank can go bankrupt. And a bank is often influenced by a government that
puts a tax on transactions and tracks them for suspicious behavior and fraud.
But with decentralized cryptocurrencies we can avoid a central bank that is
vulnerable to attacks and mistakes.

This may seem impossible, but it is made the opposite using a technology
called blockchain. Before we can even talk about the blockchain, we need to
talk about sha256, proof-of-work, and digital signatures. Which we will explain
below.

4.2 sha256

11010111100001111011011101111101
11001101100111101110100110110110
10111101111011110100110101011110
11101111101111010011010101110111
01101101011110011110011101001110

., .. 10110111011101111011011110011101

sha256("hetmml™) = o1t 0111100111001 101101101101 1)
11100110101110000111101110101110
00110100011101111000111001011100
01101111101011010111100111010011
11011101100111110111111111011101
10111100110110111010111010011010

sha256 is a function that takes a number and returns another number. In
formula 1 we use a piece of text as input and a binary encoded number as
output, but keep in mind that as far as the sha256 function is concerned, these
are both numbers. This function has three interesting properties that are very
important for the blockchain to function.

1. Given the same input you will always get the same output. So if you run
sha256("hetmml"), you will always get 11010111...10011010.

2. The output of the sha256 is seemingly random. If you change one bit of
the input value, the output value will have completely changed. If we run
sha256("hetmmk”) for example, we will get ©1110111...10111011. This
output is unpredictable, and the only way to know what the output will
be is to run the function and see it for yourself.

3. Given an output value, it’s almost impossible to calculate the input value
without a lot of guessing. We call this a no-reversible calculation, meaning
that you can do the calculation in one way. a— b, but not b— a. Old hash
functions used to implement this by multiplying two prime numbers. If we
use this simple multiplication function: a * b = ¢ and we know a and b we
can easily calculate ¢. But because we are working with only primes for a
or b, ¢’s value can only have one solution. For example, 7 * 11 = 77 you
can only get the number 77 by multiplying 11 and 7, no other numbers.
Now comes the use full part of the equation, if we only know ¢, how can
we calculate a and b7 It’s simple we can’t, at least not without a lot of
trial and error. You might say "Well you can just try a couple million
combiniations with a modern computer”. Yes, indeed you can, but the
larger the prime the longer it will take to try all the combinations, but if
we use big enough numbers, it will be unfeasible to try all the combinations
will take thousands of years a million’s of dollars. In practice, this means
that no one will even attempt to crack a single transaction encrypted with
sha256.

This brings us to the next topic important to the blockchain.

4.3 Proof of work

What if you want someone to proof that their machine did a lot of work. One
way to do this is with a so-called Proof of work, it works like this; You give
them a number, let’s say 947080, and you ask them to find a number that you
can add to that number, so that the sha256 of that number starts with 8 zeros.
We call this number a nonce. Remember, the only way to find that nonce is to
try them all. You start at 0, and then you keep adding 1 to that number and
checking the output of sha256(number + nonce) to see if it starts with 8 zeros.
This is a lot of work, but once you finally finish this task, I only have to run
sha256(number 4+ nonce) once to see if the nonce is indeed correct.

I can easily, mathematically, verify that you did a lot of work.

4.4 Digital signatures
sign(message, sk) = signature (2)
verify(message, signature,pk) = T/F (3)

Digital signatures are a way to verify that someone (or something) actually
said something. It is a way that allows you to be incredibly confident that no

one tampered with that message and that the message actually came from the
person that signed it.

It requires one to create a public key (pk), and a private key, also known as
a secret key (sk). As the name suggests the private key is a digital key that you
keep to yourself. We also have a public key, that you can give to everyone who
asks for it.

Let say we have a piece of information that Alice wants to sign digitally, so
you use function 2:

11101011010111101111110111110111
10010110111111010111001111011110
11011111011110111000011101110110
11101011110101111111100001110011
01100110111110001111011111011110
00011110111000111001111100011100
01111101111111100001111101110111
01010111100111001110011110010111
11011010111101011100111010011111
11011011110001101011100111010011
11001101011110011110001111001101
00011110110110111000111011110100

sign("Alice pays Bob €100,-", skajice) =

Alice has now digitally signed the message "Alice pays Bob €100,-". Keep
in mind that this signature is entirely depended on the message. Even if a
change one bit of the message, the correct signature would have to be completely
different.

Now, let’s say that Bob wants to verify if Alice actually signed this, and not
someone who wanted to trick Bob. Let’s assume at Alice already told Bob her
public key in advance. Bob would now simple use the verify function (3):

11101011010111101111110111110111
10010110111111010111001111011110
11011111011110111000011101110110
11101011110101111111100001110011
01100110111110001111011111011110
00011110111000111001111100011100 L
’01111101111111100001111101110111’1)‘Ahce
01010111100111001110011110010111
11011010111101011100111010011111
11011011110001101011100111010011
11001101011110011110001111001101
00011110110110111000111011110100

sign("Alice pays Bob €100,-") =T

As you can see, the function returned True. Meaning it was verified that
the message "Alice pays Bob €100,-" was indeed signed by Alice. Now, even
if we change the message by one bit, the output of function 3 will no longer be
True, but False.

That giant binary number is the signature. The signature consists of 256
bits. That means there are 22°° combinations of possible signatures, only one
of which is the correct one'. As Grant Sanderson said in his cryptocurrencies
video[12]:

1We actually do not know with absolute certainty that there is only one signature, but as

“This is a stupidly large number, to call it astronomically large would
be giving way too much credit to astronomy.”

In the context of cryptocurrencies, this means that we can use digital sig-
natures to allow anyone to proof that they actually want a transaction to be
sent.

How function 1, 2, and 3 actually work is way beyond the scope of this essay
and would require an entire essay dedicated to these to explain them, so we
won’t go into them here.

4.5 Ledger

Let’s summarize the elements we just discussed:

sha256 A function that takes some data and returns some unique garbage generated
from that data.

Proof of work A way that an unthrusted 3rd party can proof they did a certain amount of
work.

Digital signatures A way to verify that someone signed something thru an entirely digital manner.

We will now take a look at how we could make our own unofficial currency.
Let’s say we have a publicly accessible list. Now let’s say everyone is allowed
to add data to the bottom of the list, but no one is allowed to change anything
that is already on the list.

This ledger is used by three people, Alice, Bob, and Charlie. They all have
€100,- to start with. If Alice wants to pay bob €25,- she adds to following to the
list: "1. Alice pays Bob €25,-". Then she signs it using a digital signature.
Now, if Bob wants to know his current balance, he simply takes a piece of paper
and writes in starting balance, €100, at the top. And then does the following
for every transaction on the list that has Bob as the recipient.

1. He checks if the signature is valid.
2. If true, he checks if the sender had enough money at that moment of time.

3. If true, he writes the amount on his piece of paper.

Now he adds all of the money that is written down on the notepad, subtracts
all of the money he has spent, and he knows his balance.

But then how does he check if the sender had enough money at that moment
in time? Simple, he repeats the steps above for that person, but only counts
the transaction below the transaction he was checking in the first place.

This may seem like a lot of work, but with a little optimization, a computer
can it do stupid fast.

Putting this together, a ledger could look like this:

far as we know, no one has ever found another signature that would also cause the function
to return true in this case.

"1. Alice pays Bob €25,-" Valid signature Valid.

"1. Alice pays Bob €25,-" Valid signature Invalid.

(Transaction 1 is already used.)

"2. Charlie pays Alice €200,-" Invalid signature Invalid.

(Signature is invalid.)

"3. Bob pays Alice €125,-" Valid signature Valid.

"4. Alice pays Bob €250,-" Valid signature Invalid.

(Alice does not have the necessary funds.)

The impotent thing to note here is that anyone can put data on the ledger,
invalid or valid. And everyone in continuously checking if the data that was
added to the ledger is valid before accepting it.

4.6 The Blockchain

So here is the final idea that brings this all together into cryptocurrencies, which
is one of the possible implementations of a blockchain.

The blockchain solves a very specific problem: How do you make many
unthrusted parties agree on a piece of data without a central authority? From
the context of cryptocurrencies: How do you make everyone agree on the global
list of transactions, without using a central authority?

What we will do is to make everyone store it’s own copy of the block-chain.
This block-chain looks like figure 1. Take a look at it and see if you can make
sense out of it.

Each block contains a couple of values. The id of this block, the data stored
in the block (in our case a list of transactions), a nonce that we will come back
to later, the sha256 hash of the previous block, and the sha256 hash of the
current block.

The important thing to note here is that a lot of work was done to create
this block-chain. You can verify this yourself because this block-chain has a
proof-of-work embedded in it. The hash that can be seen at the bottom of each
block is created by adding all of the values above it together and running the
sha256 function on it. If you look at the hash you will a number that, when
written down in binary, starts with 40 zeros. This is because, as described in
section 4.3, I instructed my computer to try out different values of the nonce
until the hash at the bottom started with 40 zeros. That took a lot of work. You
can easily verify that I indeed did a lot of work by running sha256(blockId +
data + nonce + prevHash), and observing that the outcome indeed starts with
40 zeros.

The key part is, you did not do that work, you simply got a block from
someone else you could easily verify that it indeed took a lot of work.

In the blockchain, everyone can create a block. When someone makes a
transaction, they broadcast it to everyone in the network. Some people in the
network are block creators, or more commonly called, miners. What they do is
they listen for incoming transaction, check the validity, and create a block out
of it. In order to create a block, they first need to do a lot of work to calculate

Block # | 12432

Data

Some information

Nonce | 65302 |

r
P BOBESTHF53ded2aaTHNAFFA649C00DT F2AF 13304850
rev. Scigcdesetabibfoaznae
Hash BBBEdaCadfeh?286EU576RA844 1 02cbBARAZBTINYC
14436aB6haf2E2cat1fas

~_/

Block # | 12433 |

Data

is stored

Nonce |160346 |

Prev. | 144368860 2E2cal 1 fed [

743865h3
a5

Hash

ab1868eFh1pd 947967

4

Block # [12434 |

Data

here.

Nonce | 227563 |

P b7 4365503 7
rev. a2b1868efh1 304796735

LR abbdf featdbis
Hash 92bSeefcldeTenbald?9a

Figure 1: Blockchain

S

the nonce. When that work is done, they broadcast it to everyone, everyone
adds it to their personal copy of the blockchain, and the process continues.

This means that from the miners perspective, it becomes a race. A race to
be the first one who can create a valid block. But why would they participate
in this race? In the case of cryptocurrencies, it’s because the miner is allowed
to add one special transaction to the top of the list. This transaction does not
have a sender nor a signature but just states that the miner receives a predefined
number of money in that currency (for example, 12 BTC).

But since this is a P2P network, we cain’t just say that the first one wins,
because not everyone receives the block at the same time. Then how do you
handle conflicts? Let’s say you have to follow blockchain (4), which block should
to trust? The golden rule is to trust the chain with the most work in it. In this
case, you would trust the chain containing block K. But let’s say they are both
the same length, what should you do? The answer is to wait. Wait until one is
longer.

«— Ji

4~ A+ B+ C+ D+ E+—F+ G+ H<+1
— o+ K

(4)

This does not only quickly resolve accidental conflicts, but also malisues
conflicts. For this, we will give an example using Dogecoin[6]. Let’s say Bob
wants to fool Alice into thinking Bob send Alice 500 DOGE, without actually
sending the 500 DOGE. First Bob needs to create a fake block that contains
the transaction that didn’t really happen before or around the same time that
the real block creator did. Bob then sends the block to Alice and only Alice.
In blockchain 4 that would be block J;. Now, since the rest of the network
doesn’t know about the transaction, the network will continue to work on block
Jo. Now one block creator in the network will have created block K, it will
be sent to everyone including Alice. The change that Bob was faster than the
rest of this network in generating K is already unbelievably small. And even
if Bob would be able to generate a fake K, the amount of computing power
Bob would need to successfully keep fooling Alice is at least 50% of the entire
network. And this all was assuming that Alice did not just forward block J; to
Alice’s pears. If Alice did that, block J; would have a chance of becoming the
real blockchain, meaning that Alice now actually owns the 500DOGE that Bob
wanted to fool Alice into owning.

Not that this means that branches in the blockchain are quite common, but
will be resolved very quickly be the network if you just wait for the one with
the most trust. This means that you should not trust a block as soon as you
hear it, but instead to should wait for a few blocks to be appended to that block
before you trust it.

There are two things to note, the first note is that the block creators are
usually referred to as miners in mainstream media. The second note is that in a
lot of cryptocurrency, new money is created when creating a block by placing one
special transaction in each block that gives the block creator a certain amount
of money out of thin air. This is not used in all cryptocurrencies.

This concludes the introduction to cryptocurrencies, in the next chapter, we
will look the differences between mainstream cryptocurrencies.

5 Field Research: Comparison of
Cryptocurrencies

We looked at 5 cryptocurrancies as potention cryptocurrancies for our aplica-
tion. Bitcoin[9], Ethereum[3], Ripple[10], Zcash[2], and IOTA[4].

5.1 General comparison

Disk usage (block-chain size)
Currency Full Normal Light | Min. Memory
Bitcoin 145 GBJ[g§] 145 GBI8] 5 GBI8] 256 MBJ[8]
Ethereum (geth) | 385 GBJ[13] 25 GBJ[13] | 0,005 GB[13] < 1GB*
Ripple (rippled) N/A | 50GB SSDJ[11] - 4GB
Zcash 420 GBJ7] 10 GBJ[1] - 4 GBJ[7]
I0TA Unpublished, but advertised to IOT.

*. Personal testing
But these cryptocurrencies are popular for a reason, so let’s see give a quick
description of what makes them special.

Bitcoin is the first ever cryptocurrency.
Ethereum tries to do everything.

Ripple advertises to banks, not to consumers. Ripple can be used by a bank to send
money abroad. Ripple does not use the blockchain system described in
section 4

Zcash solves the problem that everything is public, and allows people to hide the
amount, sender and recipient using a technology called zk-SNARKSs.

IOTA focuses on allowing itself to be used by the IOT. It has features such as fee-less
transactions, data transfer, and very little disk usage requirements.

On paper IOTA looks like the best use case for our project, so we went on
with that.

5.2 I0TA

TIOTA looked really promising, it was designed from the standpoint of allowing
very cheap devices to communicate any pay each other using the blockchain. It
does not use the blockchain but instead uses what it calls a Tangle[14]. The
really attractive part of IOTA was that it doesn’t have transfer fees. The system
that is used instead requires everyone to verify two other transactions and create
a proof of work for it. But when we finally had TOTA working, we found out
that the technology at its current state just wasn’t ready. In our testing, a
transaction took at best 2 minutes and at worst more than 24 hours. The
system was way too unreliable for our needs.

10

5.3 Ethereum

So, we went looking another cryptocurrency that could do the job. After
some searching we found that that Ethereum had a special (but experimental)
--light option[5]. Unlike IOTA, Ethereum also has a couple of test networks
that allow us to test our product without using any real money. After we finally
got that working we saw that it was very quick. When making a transaction
from our Ethereum address to another Ethereum address, our code detected an
the other Ethereum account received the funds in about 16 seconds.

6 Painpoints during the Process

6.1 Hardware

e The first problem was to attach the omniwheels to the servo’s, we ended
up with a pre-build kit that has special mounting hardware.

e We wanted to use old 18650 battery cells from an old laptop. But it
turns out that soldering to these batteries is quite hard with an 80 Watt
soldering iron. To solve this we used a 3.3 V LiPo battery from another
laptop and increasing the voltage with a simple converter

o We wanted to attach the Arduino, servos, sensors and the raspberry to the
same HV rail, but we didn’t realize that the L7805CV can only handle 0.5
amps. So we ended up using another power bank only for the raspberry.
Unfortunately, it was too late and the L7805CV burned out. We replaced
it and added a heat-sink for further protection.

e We had the problem that one of the three motors wasn’t working we solved
this by replacing the wire that came with the servo.

e« We also found out that you can bend a wire only so many times. We
ended up hot-gluing the wires in place.

e We also destroyed an Arduino Uno during the process, we don’t know
why. Luckily we cloud get a replacement.

e The voltage booster ended up not working as he was supposed to, we fixed
this by replacing the conductor on the board. It is always a good idea to
check for ripple on the output.

6.2 Software

We acquired a raspberry pi with a cheap Chinese screen. At first, we couldn’t
get the screen working. The website provided an install tool that required a
very specific version of the Linux kernel installed. We had a hard time following
the instructions because of the terrible English that they used. Eventually, we
found out that one eBay seller figured it out themselves and provided raspberry
pi images with the drivers pre-installed. We do not know if the images clean
and not infected with malware, but it was basically our only option so we went
with it.

11

At first, we attempted to get IOTA working. I'm not talking about the code
here, at this stage we just tried to get IOTA working using the provided GUI.
The first problem was actually getting some IOTA to spend. After some looking
around we found out that they had a chat room on slack when people could
ask questions. It even had a specific room for asking for "donations”. We asked
for a donation in the evening and the next day we saw that we had been given
0,1 IOTA or about €0,40. We tested a single transaction and it took about 8
minutes to complete. Slower than expected, but still acceptable.

Now we started writing some code that interacted with the IOTA ‘block-
chain’. The documentation was really hard to get thou, it was riddled with
outdated information and invalid server URLs. But we finally got it working
and saw that and did a few more test, making sure our program would print all
the information we would probably need if it didn’t work. What we basically did
was repeatedly queering the local IOTA client that was connected to the IOTA
network for our current balance. After a few tries, we finally got it working.
But then something strange happened, we send money to the test account but
the test account didn’t relieve it. We waited 24 hours and the money was still
not received.

So we started to look at Ethereum. The Ethereum GUI client was relatively
easy to setup using the test network. We requested some money to test with
using their online tool and started making some transactions. We found that
this system was way more reliable so we continued to writing some code for it.

We quickly figured out that using their proved API we couldn’t just query
for a transaction history of a specific address. So we looked for an alternat-
ive. We settled on the following solution: Listing for newly created blocks and
then checking if that block contains a transaction that has our address as the
recipient. This works but the downside is that we can’t check if a transaction
happened after the fact.

Now we needed some GUI for the user to interact with. The robot has a
screen that we can display information on, but we cannot use buttons since the
touch screen is broken. We chose to display a QR code counting the address and
some money that we want to have transferred. When we receive the transaction
we change the display so it says thank you.

Now we needed to get the code working on the robot itself. Because Noah
didn’t want to go to Joppe’s house every time he wants to make a small change
we decided to add an SSH connection. SSH allows computers to send commands
to other commuters over the internet. Noah already had experience in setting
up secure SSH connections so it wasn’t hard to get it working. We also wanted
to see the screen of the robot so we set up a VNC. VNC allows us to interact
with the GUT of the Raspberry Pi (or any computer that has VNC) over the
network.

Now Noah can work on the Raspberry Pi from his home. First, we first
needed to get Ethereum (geth) working. There are no official builds for the
ARM processors that the raspberry pi used so we compiled it our self. In the
process of compiling it, we needed to do a full OS upgrade. All went well and
we copied to the Raspberry Pi and it worked.

Or so we thought. Later we discovered that in the process of upgrading the
OS the drivers of the screen stopped working. First, we tried to downgrade the
kernel, but we failed to figure out how to do that on a raspberry pi. Then we
tried to overwrite the boot partition with the boot partition that we manually

12

extracted from the image that had the drivers pre-installed, but without success.
So eventually we overwrote the Raspberry Pi entirely with the image, meaning
that we had to start over with setting up the Pi. We created an SSH connection
and a VNC connection.

But now came the problem, we couldn’t compile the code without a system
upgrade. Eventually, we used a technology called Docker. In essence, docker
allows you to have an OS inside another OS with minimal performance hits. So
we used docker and ran into another problem, the 8 GB SD card in the raspberry
pi was too small. So, I put the SD card in my laptop, created a backup image.
Then I put a larger SD card in my laptop and restored the backup image. It
worked, I was able to finish the installation of Ethereum and our code worked
as well.

6.3 Further Information

All of our code is available at https://github.com/nloomans/pws-robot. This
also includes an overview of how our robot works. Feel free to use it for your
own projects.

7 Discussion

Our hypothesis was mostly right, but we didn’t end up using IOTA. While
TIOTA did fulfill on its promise of low resource requirements, it simply was too
unreliable for our needs. Ethereum unexpectedly became the one we ended up
using and we can quite confidently say that, at least for our needs, it is ready
to be used on low-end machines like the Raspberry Pi.

8 Conclusion

So in conclusion, this was an incredibly fun project. For Noah, it was his
second larges project he ever worked on. We both learned a lot about how
cryptocurrencies work.

So to answer our research question; Yes, cryptocurrencies are ready to
be interacted with on a light-weight computer. To be specific Ethereum is
ready. It should be noted that we only tested simple listening from transactions
in the blockchain. But it seems likely that sending transactions would also be
easy. Also note that this definitely does not include mining, because why it is
technically possible, you are very unlikely to ever be the first one to create a
block, if at all.

The is also a presentation that goes hand in hand with this essay, we would
highly recommend attending.

13

https://github.com/nloomans/pws-robot

References

NOTE: We do not use APA, instead we use default biblatex style. This is because
it allows for some easy automation and makes the references in the document

clickable.

[1] 1.0 User Guide. URL: https://github.com/zcash/zcash/wiki/1.0-User-
Guide.

[2] Zerocoin Electric Coin Company. Official Zcash website. URL: https://
z.cash/.

[3] Ethereum Foundation. Official Ethereum website. URL: https: //www .
ethereum.org/.

[4] TIOTA Foundation. Offical IOTA Website. URL: https://iota.org/.

[5] Light Clients and Proof of Stake. URL: https://blog . ethereum. org/
2015/01/10/1light-clients-proof-stake/.

[6] Jackson Palmer and Shibetoshi Nakamoto. Dogecoin Official Website. URL:
http://dogecoin.com/.

[7] Paige Peterson. User Expectations at Sprout Pt. 2: Software Usability
and Hardware Requirements. URL: https://z.cash/blog/ software -
usability-and-hardware-requirements.html.

[8] Bitcoin Project. Bitcoin System Requirements. URL: https://bitcoin.
org/en/bitcoin-core/features/requirements.

[9] Bitcoin Project. Official-ish Bitcoin website. URL: https://bitcoin.org/.

[10] Ripple. Official Ripple website. URL: https://ripple.com/.

[11] Ripple. Operating rippled Servers. URL: https://ripple.com/build/
rippled-setup/.

[12] Grant Sanderson. Ever wonder how Bitcoin (and other cryptocurrencies)
actually work? URL: https://www.youtube.com/watch?v=bBC-nXj3Ng4.

[13] Afri Schoedon. The Ethereum-blockchain size will not exceed 1TB anytime
soon. URL: https://dev.to/5chdn/the-ethereum-blockchain-size-
will-not-exceed-1tb-anytime-soon-58a.

[14] The Tangle. URL: https://iota.org/IOTA Whitepaper.pdf.

14

https://github.com/zcash/zcash/wiki/1.0-User-Guide
https://github.com/zcash/zcash/wiki/1.0-User-Guide
https://z.cash/
https://z.cash/
https://www.ethereum.org/
https://www.ethereum.org/
https://iota.org/
https://blog.ethereum.org/2015/01/10/light-clients-proof-stake/
https://blog.ethereum.org/2015/01/10/light-clients-proof-stake/
http://dogecoin.com/
https://z.cash/blog/software-usability-and-hardware-requirements.html
https://z.cash/blog/software-usability-and-hardware-requirements.html
https://bitcoin.org/en/bitcoin-core/features/requirements
https://bitcoin.org/en/bitcoin-core/features/requirements
https://bitcoin.org/
https://ripple.com/
https://ripple.com/build/rippled-setup/
https://ripple.com/build/rippled-setup/
https://www.youtube.com/watch?v=bBC-nXj3Ng4
https://dev.to/5chdn/the-ethereum-blockchain-size-will-not-exceed-1tb-anytime-soon-58a
https://dev.to/5chdn/the-ethereum-blockchain-size-will-not-exceed-1tb-anytime-soon-58a
https://iota.org/IOTA_Whitepaper.pdf

	Introduction
	Technical Word Definitions
	The goal
	How Cryptocurrencies Work
	Introduction
	sha256
	Proof of work
	Digital signatures
	Ledger
	The Blockchain

	Field Research: Comparison of Cryptocurrencies
	General comparison
	IOTA
	Ethereum

	Painpoints during the Process
	Hardware
	Software
	Further Information

	Discussion
	Conclusion

